IS SMARTGRID INTERESTING? AN ACADEMIC PERSPECTIVE

Anna Scaglione UC Davis

SMARTGRIDCOMM 2010

Power grids: the ultimate supply chain

- Energy moves at the speed of light
 - Just as fast as bits do…
 - Balancing demand, supply in real time
- Big challenge/Big payoff
 - Managing volatility
 - From a large distributed supply of Renewable Energy
 - From high Wattage load (e.g. PHEV)
- Tired of our fuel addiction?
 - Today's "grid" is a complex system, with economic and information overlay networks
 - Its adaptation rate is slow
 - The legacy systems conforming to traditional SCADA models are inadequate

Legacy technology

Today: Cyber versus physical

CYBER INFRASTRUCTURE

Information flows over

Unsophisticated, naturally presenting a bottleneck

NEW YORK STATE GRID

Power flows over a random graph

Moving the control at the edges

What is the role of communication science

- If we want to do speed trading with every appliance in the US we need something better than that!
- Millions of transactions per second
- Small bursts of critical data going back and forth
- Challenge? Changing the state of the physical system to serve customers, earn profits, without destabilizing it

Classical Optimal Power Flow (OPF)

 Every hour: look at the bundled load try to enforce deterministic constraints

Accurate statistical modeling

 Use AMI data and derive accurate statistics (not only predictions...) for high Wattage loads, renewable, etc.

Un-bundled Load Information

Manage risk

Example: Electrical Vehicle "Traffic" Model

Possible model for EV

- Mt/GI/∞ queueing system [Eick et al. '94]
- EV arrive with a time-dependent rate $\lambda(t)$
 - semi-periodic in our case, i.e., customers arrive more frequently during the evening and early night hours on each day

- Reasonable(untested) assumption: Poisson arrival
- GI : charging time S random < 8 hours; rate approximately constant
- □ ∞ Servers → once plugged the device is ON = served

The engineering tools

Ingredients for a good SmartGrid architect

Key points

- Shifting the energy management to the edge of the system, rather than centrally
 - Microgrids, Community Energy Storage
 - To be successful, new technologies should operate as an overlay system, coexisting with the power grid infrastructure
- A "risk based" (instead of "worst case") approach:
 - Mine the data and model physical and demand volatility with full statistics
 - Use opportunistic and flexible paradigms for resource allocation
- Interesting?
 - Controlling the demand, managing traffic, prices and resources over large footprints
 - It is rocket-science! It is really interesting!