

On the Value of SmartGrids for Power Systems

Keynote, Tuesday October 18

Lennart Söder Electric Power Systems, KTH

Metering in my house (5500 kWh/year)

Everyone has a type of this in Sweden

Metering in my house (5500 kWh/year)

Grid invoice (monopoly)

Energy invoice (competition:

≈140 suppliers)

- Measures absolute value
- Sends data one time per day
- Sends the state on the screen
- Uses GSM (GPRS)
- Hourly measures under discussion

Meter:

Aim of a power system:

- .Supply consumers with electricity when they want
- = keeping the continuous balance between production and consumption
- (deregulated → competition)

2. Keep the voltage for the consumers

(regulated monopolies)

unbundling

Power = current · voltage

Structure:

- What is "Smartgrids"?
- Driving forces for Smartgrids
- On the structure of the Value of SmartGrids for Power Systems.
- Examples of existing and new SmartGrid solution and requirements for implementation
- EIT-InnoEnergy-SmartGrids!

Experience

A smart person

Decision

Information

Action

- A person considers information from the senses, takes decisions and take actions and/or spreads the conclusions to others
- A "smart" person, can select interesting information, take "smart" decisions and take the "right" actions
- To be "smart" also implies that one understand the consequences of the actions.

Experience -

A smart person

Decision

Information

Action

To be able to be "smart" the following is needed:

- Good information
- "Smart" decisions
- Possibility to be considered
- Knowledge of consequences of actions
- Take notice of of consequences of actions = experience

Experience

A smart person

Decision

Information

Action

To be able to be "smart" the following is needed:

- Good information
- "Smart" decisions
- Possibility to be considered
- Knowledge of consequences of actions
- Take notice of of consequences of actions = experience

- A smart grid uses available information, takes decisions and actions and/or spreads the conclusions to other grids.
- A "good action" means that one can estimate the consequences of the actions, i.e. a good model!

Comments on SmartGrids

- Information is important, i.e. IT to transmit data, e.g. AMR
- The "smart" part are the decisions, not the information!
- **Controllability is** central. If there are not components to control, then the value of more information is lower.
- Consequence analysis, is important, i.e. an analysis of what happens after a control action → a good model is needed
- "Smart-Grids" includes all from applications with existing technology up to advanced research.

A smart grid measure → think → control

- Measure More measurements are (will be) available today/tomorrow, e.g. AMR, PMU
- Think: Computers are (will be) much faster and trainer simulators can make the decision takers more efficient
- Control: More controllable devices are (will be) available, e.g., HVDC, SVC, EV, DSM in households etc.
- IT: is (will be) needed and can include sending of price signals, direct control signals, decision support etc.

Some personal comments:

"Smartgrids are needed for"

• LS: One can, e.g., integrate large amounts of wind power and/or electric vehicles without new Smartgrids technology, but it may be less efficient

"With Smartgrids the losses are reduced"

 LS: Often this is not the case since Smartgrids means a higher use of existing equipment instead of investment in more copper!

"How much will Smartgrids cost?"

• LS: One should only invest in Smartgrids if it creates a net benefit, otherwise not.

Driving forces for Smartgrids

Amount of intelligence in power system

Driving forces for Smartgrids

Increasing value:

- More variable power sources
- Higher pressure on cost efficient operation
- Higher requirements on reliability

Decreased cost:

- For measuring
- For control
- For information transfer
- For information processing

KTH VETENSKAP VETENSKAP VETENSKAP

20-20-20 goals:

Wind power and transmission capacity

	wind
	energy
	2010
Sp	16 %
Ро	17 %
Ir	13 %

	wind
	max
	share
Sp	54 %
Ро	81 %
Ir	52 %

- Portugal –Spain: 1200 MW
- Spain France: 1200 MW
- Spain Marocco: 650 MW

- Irland Scottland: 450 MW
- Planned: +850 MW

Pricing in power markets - 1

Pricing in power systems - 2

On up-dated forecasts

Pricing in power systems - 4

With an assumption of perfect competition:

- Prices are based on production marginal costs
- Low costs units are used first
- Higher load → higher prices:

Weekly demand

pricing

Pricing in presence of variable sources (e.g. wind)

Wind power has a marginal cost ≈ zero
The production level is depending on wind speed

It is not easy to make good long term (hours) forecasts

Other units have to cover the net load = demand - wind

Weekly demand + wind

Weekly net demand

Pricing in presence of variable sources

- Other units have to cover the net load = demand wind
- The other units production is controlled by price!
- more volatile price
- Note: This is independent of "fixed price" etc

Weekly net demand

"Therma" pricing"

Solutions and competition

Assume a system with large price variation:

Three types of "business opportunities"

More trading with neighbors

Demand side management

Flexible plants

- There is a competition between these methods.
- Much transmission reduces price changes → less interest in DSM

On the structure of the Value of SmartGrids for Power Systems.

 More variable power → higher need for flexible consumers

However:

- Wind power forecasts are more uncertain → larger volumes on shorter markets (not so easy to plan)
- Wind power does NOT have a typical daily pattern → No "typical" pattern of prices either.
- → One can not, e.g., count on "load your electric car during the night".
- There can be days with low prices or high prices → relatively large energy volumes
- Flexibility competition from power plants and lines

On the structure of the Value of SmartGrids for Power Systems.

 More variable power → higher need for flexible consumers

Structure:

- Consume less at high prices (= low wind, high consumption)
- Consume more at low prices (= high wind, low consumption)

Possible "SmartGrid" in (not only) my house

Wood pellets boiler

Today:
Reserve electric heating when heat $< 40^{\circ}$

Tomorrow (SMART):
Start electric heating
when
price < 4 Eurocent/kWh

Possible "SmartGrid" in (not only) my house

Requirements for SMART solution:

- Hourly meetering (= pay changing price) + information sent to burner with, e.g., SMS, etc
- OR: (more complicated): Contract with supplier (which still means hourly measurements)

Tomorrow (SMART):
Start electric heating
when
price < 4 Eurocent/kWh

AMR in Sweden today

- Full unbundling for all consumers, also households → often a grid-bill + energy-bill
- Measurements performedby grid owner.
- In Sweden all consumers (also households) pay for true consumption which is measured per month and sent in using IT technology.
- Most meters measure per hour.
- Some grid companies offer the service for costumers to study their hourly consumption on internet.
- It is technically possible to, e.g., charge consumers based on hourly prices and hourly consumption.

AMR/DSM test in Sweden

- Customers were offered lower prices for the whole year except for 40 hours with very high prices, 0.3-1 Euro/kWh
- Customers to be alerted 1 day ahead via SMS or e-mail
- Only hourly metering, SMS and e-mail needed
- 80 households, participated the winter 2004-05

= a possible Smartgrid future everywhere

AMR current use in some parts of Sweden/Finland

- Customers can get hourly consumption information with approx one day delay
- Interface through the a web page, free of charge service
- Hourly data as well as alarms and queries are interfaced into the DMS system
- Outage management
 - Number of customer trouble calls reduced,
 - Faster fault repairing and shorter interruptions
 - Reduced amount of trouble shooting and unnecessary customer visits
 - Security: real-time information of zero conductor faults and voltage level
 - Accurate and extended reporting and statistics

Smart EV Consumtion-Production balance measure → think → control

Smart Balancing services -1

Det svenska stamnätet omfattar huvudsakliger kraftledningar för 400 och 220 kV, ställverk,

Nordic regulating market:

- No AGC (except Dk-W)!
- Assume that wind power decreases in Denmark with 100 MW
- The bids to the regulating market (tertiary control – up-regulation in 15 minutes) are coordinated in the Nordic system
- If an up-regulating bid from northern Finland is the cheapest and transmission limits are not violated, then this one is used!
- Distance: ~1400 km

Smart Balancing services -2

Central Europe:

In largely meshed systems as central Europe it is a challenge to compensate wind power decrease in Netherlands with power production increase in eastern Hungary within 15 minutes?

Distance: ~1400 km

KIC InnoEnergy – A world class alliance of top European players with a proven track record

- 13 companies,
 10 research institutes,
 13 universities
- ~50% industry partners (incl. associated partners)
- >50% of key research players in Europe
- Covering the whole energy mix
- Knowledge triangle balanced along all dimensions
- Strong connection with VCs and local governments

KIC InnoEnergy will bring innovation to the whole energy-mix coherent with the SET Plan

CC BENELUX

- Intelligent Energy-efficient Buildings and Cities
- Setting up an intelligent house with minimum energy needs

CC IBERIA

- Renewables (Wind, CSP, Photovoltaics, Wave and Tidal energy)
- Demonstration project solar CSP

CC ALPS VALLEY

- Sustainable Nuclear & Renewable Energy Convergence
- Nano-materials for high energy / high power batteries

KIC InnoEnergy CC Sweden

Information & Communication

Energy Market Design & Customer Interaction

Evolutio n of existing assets into a smart grid **Technologies**

Smart Grids from producers to consumers

Smart Grid Components

Electric Energy Storage

Major Smart Grid Demons trations

Smart Grid Materials

Conclusions

Smartgrids = business as usual

or

Smartgrids = vision for tomorrow?

Conclusions

Smartgrids = business as usual YES (take the best of new technology) NO (new driving forces)

Smartgrids = vision for tomorrow?

YES (large possibilities)

